A Cholesky Lr Algorithm for the Positive Definite Symmetric Diagonal-plus- Semiseparable Eigenproblem

نویسندگان

  • Bor Plestenjak
  • Ellen Van Camp
  • Marc Van Barel
چکیده

We present a Cholesky LR algorithm with Laguerre’s shift for computing the eigenvalues of a positive definite symmetric diagonal-plus-semiseparable matrix. By exploiting the semiseparable structure, each step of the method can be performed in linear time.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Levinson-like algorithm for symmetric positive definite semiseparable plus diagonal matrices

In this paper a Levinson-like algorithm is derived for solving symmetric positive definite semiseparable plus diagonal systems of equations. In a first part we solve a Yule-Walker-like system of equations. Based on this O(n) solver an algorithm for a general right-hand side is derived. The new method has a linear complexity and takes 19n − 13 operations. The relation between the algorithm and a...

متن کامل

Direction-Preserving and Schur-Monotonic Semiseparable Approximations of Symmetric Positive Definite Matrices

DIRECTION-PRESERVING AND SCHUR-MONOTONIC SEMISEPARABLE APPROXIMATIONS OF SYMMETRIC POSITIVE DEFINITE MATRICES∗ MING GU† , XIAOYE S. LI‡ , AND PANAYOT S. VASSILEVSKI§ Abstract. For a given symmetric positive definite matrix A ∈ RN×N , we develop a fast and backward stable algorithm to approximate A by a symmetric positive definite semiseparable matrix, accurate to a constant multiple of any pres...

متن کامل

Robust Approximate Cholesky Factorization of Rank-Structured Symmetric Positive Definite Matrices

Given a symmetric positive definite matrix A, we compute a structured approximate Cholesky factorization A ≈ RTR up to any desired accuracy, where R is an upper triangular hierarchically semiseparable (HSS) matrix. The factorization is stable, robust, and efficient. The method compresses off-diagonal blocks with rank-revealing orthogonal decompositions. In the meantime, positive semidefinite te...

متن کامل

Orthogonal similarity transformation of a symmetric matrix into a diagonal-plus-semiseparable one with free choice of the diagonal

It is well-known how any symmetric matrix can be transformed into a similar tridiagonal one [1, 2]. This orthogonal similarity transformation forms the basic step for various algorithms. For example if one wants to compute the eigenvalues of a symmetric matrix, one can rst transform it into a similar tridiagonal one and then compute the eigenvalues of this tridiagonal matrix. Very recently an a...

متن کامل

New Efficient and Robust HSS Cholesky Factorization of SPD Matrices

In this paper, we propose a robust Cholesky factorization method for symmetric positive definite (SPD), hierarchically semiseparable (HSS) matrices. Classical Cholesky factorizations and some semiseparable methods need to sequentially compute Schur complements. In contrast, we develop a strategy involving orthogonal transformations and approximations which avoids the explicit computation of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005